

Decentralized Energy Storage – Challenges for Batteries

VARTA

VARTA Microbattery GmbH – Company Figures

Headquarter:	Ellwangen, Germany
Management:	Herbert Schein (CEO) Jens Stahmann (CFO)
Employees:	Germany: 530 worldwide: 1700
Turnover:	150 Mio. €

2011 Copyright by VARTA Microbattery GmbH STYRIAN ACADEMY for Sustainable Energies

Company history and world history go hand in hand

1969

1896 1893

First electromobile

First North Pole expedition

The electric car Baker "Runabout" captures the German market. VARTA supplied the battery.

Fridtjof Nansen explores the utmost north of our planet. VARTA supplied the expedition with light.

Neil Armstrong entered as first human being the moon. VARTA enabled the historic pictures of the expedition.

First moon landing

Small devices with huge help. VARTA develops new

hearing aid cell

Smallest rechargeable

2003

microbatteries.

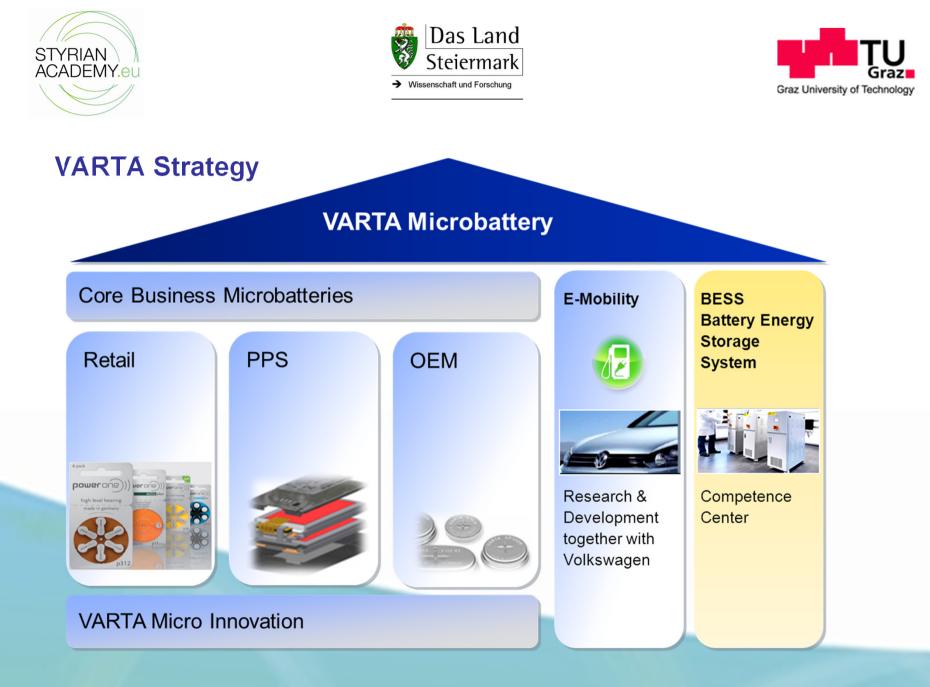
The car of the future drives with electric current. VARTA is pumping energy into the heart of the

electromobile.

Research company

2009

2010

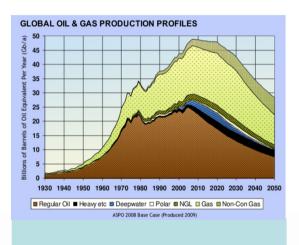


Energy turnround

Germany starts with the energy turnround. VARTA makes enery storage possible.

STYRIAN ACADEMY for Sustainable Energies

2011 Copyright by VARTA Microbattery GmbH



Energy Problem of the World

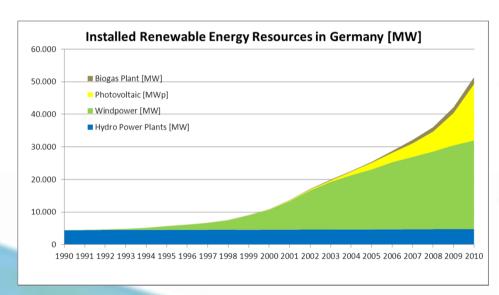
Fossil Fuels

Peak Oil

Fossil Fuel Power Station

- CO₂ Production
- Global Warming

Atomic Power Station


Technical Risk

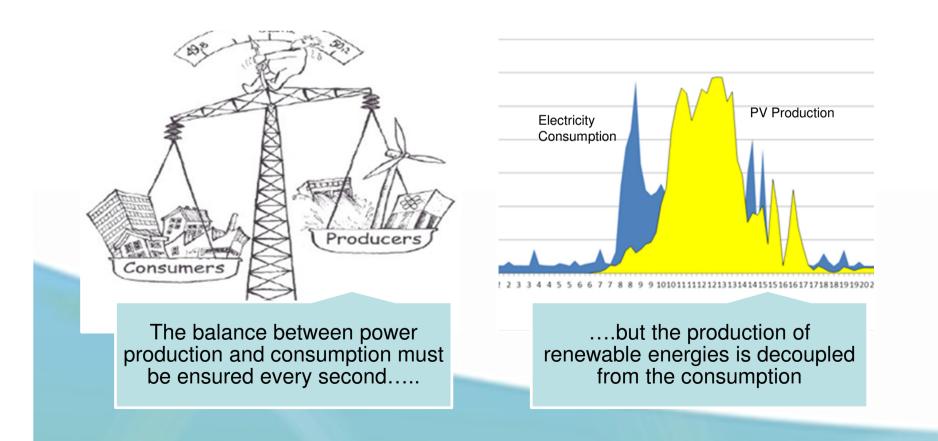
Solution of the Energy Problem: Renewable Energy

Wind Energy

Hydro Power

Bio Gas

Solar Energy


STYRIAN ACADEMY for Sustainable Energies

Problem of Renewable Energy

How to integrate Renewable energy

th	expansion of ne Power Grid	Demand Side Management	Centralized Energy Storage	Decentralized Energy Storage
li D li S 3	Transmission ine, Distribution ine Suficiant up to 5 % renewable energy*	Smart Home, Smart Metering	Pump storage hydro power plant, Compressed air power plant, Hydrogen, Methan storage	Batteries - Lead-Acid - Li-Ion - NaS - Redox Flow
STYP	IAN ACADEMY for Sust	ainable Energies		H-ton WARYA

2011 Copyright by VARTA Microbattery GmbH

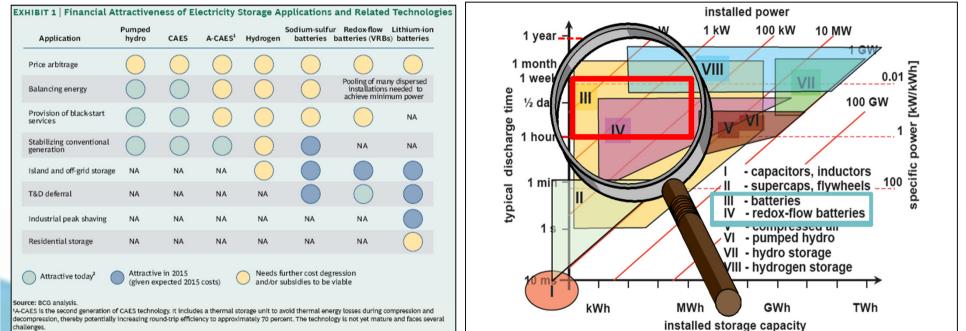
Source: Dena II Study 8

Battery Storage: Chemistry

	Lithium Ion Battery	Lead-Acid Battery	NaS High Temperature Battery	Redox Flow Battery
Energy density	200-400 Wh/l	50-120 Wh/l	170 Wh/l	20-30 Wh/l
Power density	700 – 1300 W/I	10-400 W/I	20–40 W/I	5 W/I
Efficiency	90-95 %	75-85 %	75 %	75 %
Lifetime	~8 Years ~3000 Cycles	~3 Jahre ~250–1000 Cycles	~7 Years >2500 Cycles	~35 Years ~13000 Cycles
Costs (Cell)	500–1000 €/kWh 1500–4000 €/kW	150 <i>–</i> 350 €/kWh	200 – 300 €/kWh 1000 – 2000 €/kWh	300 –800 €/kWh 1500 – 4000 €/kWh
System costs	1800 €/kWh	300 €/kWh	estimated 700 €/kWh	estimated > 1000 €/kWh
Market maturity	Development	Mature	Development	Research

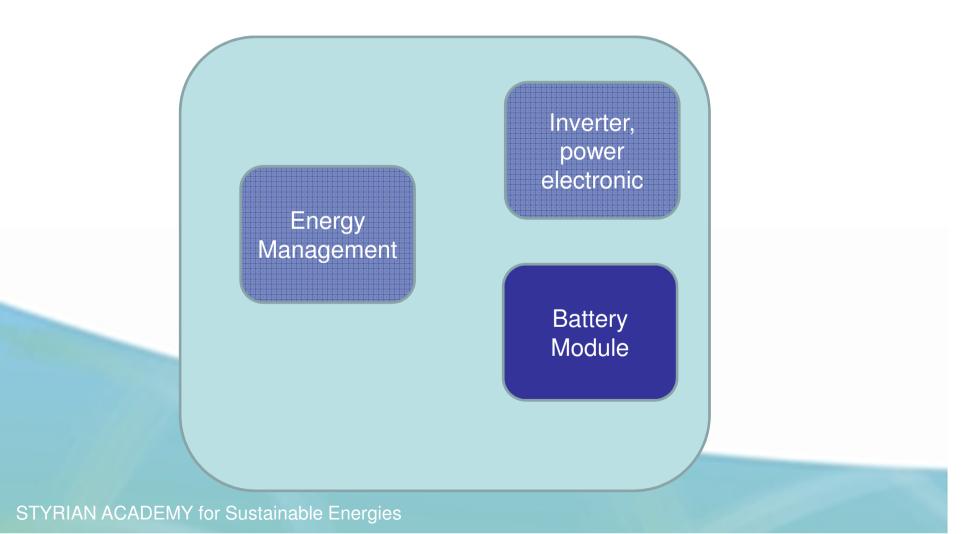
STYRIAN ACADEMY for Sustainable Energies

2011 Copyright by VARTA Microbattery Gmb


9

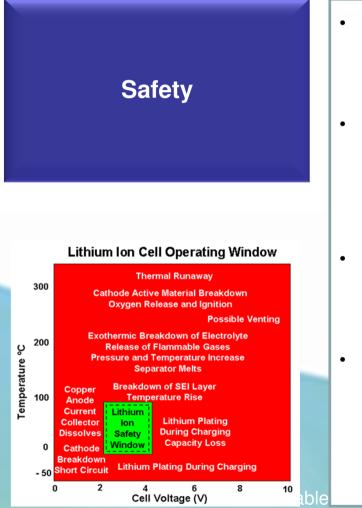
Applications for Battery Storage

²Expected IRR of 7 percent or more.


Source: BCG Study Revisiting Energy Storage STYRIAN ACADEMY for Sustainable Energies Source: DU Sauer

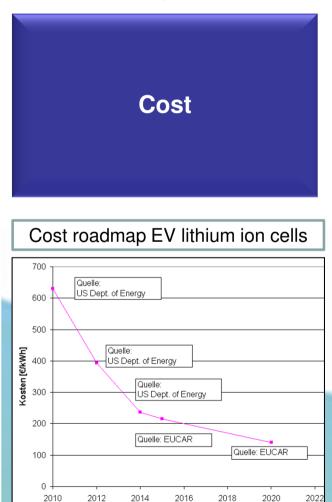

Components of a Storage Battery

STYRIAN ACADEMY for Sustainable Energies


Capacity	•
	•
STYRIAN ACADEMY for Sustainable	le

- Energy of laptop cell ~11Wh
- Energy of a large format cell ~150Wh
- Assembly of a huge number of cells necessary to reach reasonable capacity of a battery system
 - 4500 respectively 300 cells for 50kWh
- Battery storage system's suited for decentralized energy storage
 - The energy will be stored were it was produced before e.g. energy from photovoltaic system's
- Vision: virtual storage plant
 - Connection of a huge number of battery storage system
 - Needed:
 - Centralized intelligence
 - Communication system

- Operation of lithium ion cells only in a small operating window safe
- Research of cell chemistry to extend operating window
 - New electrode material
 - Improved electrolyte
- Every cell has to be controlled with respect to voltage, current and temperature → protection circuit
- Battery management system for series connected battery cells
 - Passive BMS: bypass with a resistor (loss of heat)
 - Active BMS: charge transfer from weak cell to strong cell


- 2 modes of aging
 - Calendric aging
 - Cycle aging
- Target Lifetime
 - >20 years
 - >7000 cycles
- Short lifetime increases life cycle costs
- Ways to increase lifetime
 - Research of cell chemistry
 - E.g. new electrode material
 - Reduced depth of discharge (DoD)
 - Example cell was cycled till 94% of its original capacity is remaining
 - 100% DoD: 500cycles, 80% DoD: 2500

STYRIAN ACADEMY for Sustainable

Zeit

• Costs for battery storage system's are still to high

- Costs Today (Cell Level): 500-1000€/kWh
- Target Costs (Cell Level): 150€/kWh

Action needed

- Incentive program by government to stimulate the market, (e.g. like at the PV market)
- Research for cost reduction
- Using synergies with EV batteries (economy of scale)

VARTA Battery Energy Storage System

Engion by VARTY Microbattery

Residential energy storage in combination with PV system 6kWh usable Capacity.

THANK YOU.

